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The propagation of elastic-plastic waves 
red when its unloaded end Is heated In a 
linear variation of temperature makes It 

in a semi-infinite bar is conslde- 
linear manner. The choice of a 
possible in this case to obtain an 

exact solution of a nonllnear heat conduction equation [l and 23 and of the 
problem of propagation of stress waves. In doing so It has been possible 
to exnlain the aualitatlve neculiarities of solution of this type of prob- 
lems.* It has been ascertained that if the (~onst~t) velocity-of propaga- 
tion of heat is e ual to the velocity of propagation of elastic or of plas- 
tic disturbances 4 in the case of linear strain hardening), a "resonanceW 
occurs and waves of strong discontinuity form. 

For any rate of rise of temperature at the free end of the bar, a wave 
of unloading occurs. In contrast to the case of the usual wave of unloading 
[33, the speed of the unloading wave approaches the speed of propagation of 
plastic waves, not the speed of sound [4], or else coincides with the front 
of the thermal wave. This is explained by the fact that as temperature.In- 
creases with a non-decreasing rate at the end of the bar, the wave of un- 
loading Is of an 'internal" nature. If the wave of unloading [3] arises as 
a result of changes of the boundary regime, the occurance of the thermal 
waveofunloadlng is a consequence of the change of slope of the stress-strain 
diagram (for a purely elastic diagram and the same boundary conditions un- 
loading does not take place). 

For aeertain relation among the parameters of the problem it is not pos- 
sible to determine the equation of the wave of unloading from only the boun- 
dary conditions and the condltlons of continuity of the solution together 
with Its first derivatives everywhere. In order to find the velocity of the 
wave of unloading it is necessary to introduce additional considerations. 
As In [5], it Is assumed that the material of the bar exhibits linear strain 
hardening. The mechanical characteristics are considered not to depend upon 
temperature. 

1. The basic system of dimensionless Equations using the notations as in 

[5], may be written In the form 
aT 

aaTa (equati ar==ayP on of heat conduction) (1.1) 

aa~ ai -=_ (equation of motion) 
3+ a9 
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s = *-T(esuation of state) 
aY 

(1.3) 

The initial and boundary conditions dre 

u (y, 0) = au (y, 0) / az = 0, s (0, z) = 0, T (y, 0) = 0 (1.4) 

Equation (1.1) admits exact solution 

T = %P2’ - 'IZPY (Y d PT) 
0 

(1.5) 
(Y >, PT) 

Here the last condition of (1.4) Is obviously fulfilled and T(O,T)=@"T 

at the free end of the ',ar. 

Let us consider the case for S > 1. The solution of the systems (1.2) 

and (1.3), taking account of (1.4), has the form (Flg.1) 

In the region YOK 

u=o 

in the region KON 

PS 
u = 4(p--l); (y” + 22) - 2 @L 1) ?/r - $ P2 

P’ 
s = 2@'-1) (Y .- sd_ (l-6) 

in the region NOT 

P 
U = - 4(p+1) 

lya + zf) +$YZ-_+.ya 

s=- P 

2(P+i) y 
(1.7) 

Fig.1 

It Is apparent from (1.6) that the straight lines y = flZ f COIlSt Inthe 

region KON are lines of constants of displacement, velocity and stress. 

y = fir _i_2(f-$P2) P’- I 
, U-F, u+=+, l$p+ 

2 f 
s=-1 

(subscripts 7 and y denote derivatives). Therefore solution (1.6) is valid 

only In the region KOHL; there is a plastic zone above HL. 

Solution (1.7) Is valid In the region OHP. By direct verification we can 

assure ourselves that above PH 

loading. Therefore, a wave of 

begins at the point H (2 (1 + 

there exists no solution corresponding to 

unloading with the positive Inclination HM 

When there Is linear Strain 

during loading, (Fig. 2) 

fw3t 2 (I+ PI /Pa). 
hardening we have In the plastic region MHL, 



ulr = e zz e" + T, s = q2eo + qa - 1 
qa=ElfE 

where &is the modulus In the hardening range. 

From this 
s = qsu3 - q2T + f - 1 (1-g) 

From (1.2), (1.5), and (1.9) we obtain 

Equation of motion In terms of displacements 

UT+ = qau~,~ + 'I, q"B Fig.2 

The characteristics of last Equation and the relations on them may be 

written 

or, after integration 

u+ = + 9% 4" l/a #Y + c1.z (1.10) 

We denote Equation of the w&ve of unloading by 'C =o (Y) We shall 

assume that its initial velocity satisfies inequality 

i< 0' Ml + B) f 87 < 11 9 (l.li) 

St is then possible to draw through an arbitrary point # of the wave of 

unloading which is sufficiently close to the point x the characteristic of 

positive slope MC and in the plastic zone the characteristics of both dlrec- 

tlons, MA and MB, which intersect the elastic-plastic boundary HL. The re- 

latlons (1.10) hold along MA and ~3. From this fact, t&Zng conditions 

(1.8) Into account, we obtain at the point M(Y,o (Y)) 

uy = - qw 
2(fJS_q”) @M + 

P’P 1 -q* -- 
2fp-qy y P--P ' 

ur = - puy (1.12) 

We introduce the function f(Y), which is equal to 

the stress in elements of the bar just behind the wave 

of unloading. Following Equation of state will then 

hold in the region AH.84 (BC, Fig. 2) 

S= uv -T+yf(y)+qF 

and Equation of motion may be written out in the form 

Along the characteristic DM 

or, after Integration 

& =%+qF f(Y) ++BY+G (1.13) 

In the region rP@ Equations (1.2) and (1.3) apply, 

and we have along @ 
Fits. 3 
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1 
UT = up++ + c,, c, = pa (2P + 1) (y - r) 

2 @+I) 
(1.14) 

Obviously, f (2 (1 + B) / 8') = --1. Requiring the continuity of u7 and 

uY at point D, we find by comparing (1.14) with (1.13) that 

c, = c, + (q” - 1) I q2 

Thus, at the point M(7J,w (9)) on the wave of unloading we have 

u,= u”+ 7 f (Y) + ; BY + yg$ ry - 0 (y)] + f.7 (1.15) 

Moreover, s (Yl@ (y)) = f (Y), Or 

uy = f (y) I q2 + p20 (y)/2 - By / 2 + (1 - q2) / q2 (1.16) 

Eliminating u7, ~1, and f(y), from (l.l2),(1.15) and (1.16), we obtain 

Equation of the initial portion of the wave of unloading In the form of the 

straight line 

r = 5lY + rll, q2+2B+l El = 2p+pj3+p 9 
2 (I - PI (I+ PY 

rll = - p8 (~~0 + qap + p) (1*17) 

Here conditions (1.11) are satisfied for any 0 < q< 1. 

This solution is valid until the characteristics MC and PH intersect, 

i.e. up to the point jfl (Fig. 3). 

Analogously to the preceding, by considering the characteristics NA, NB, 

ND and DE we find that the next portion of the wave of unloading M,Mz is a 

segment of a straight line with slope c2 greater than cl, 

Fig.4 

E’2 = 
(74-k wt 49Y3 + 4P + 1 

4q4+ 9"P + 49'L+ WB+ P 

2 (1 - 92) (- 92:-l 49Y3-t (IV+ P2+ 48-I 1) Q-_----- 
P" (49"+ 9"B +4!P+ %PP + P) 

where (1.18) 

2q251+ 9” + 1 ’ pa (%/‘El + ‘/” + 1) 

Beyond point ,4f. we obtain Z = &2/ $ ljs, & > Es, 

etc. Thus the wave of unloading presents a brokenline. 

The slopes and intercepts of the Individual segments 

of it are related by recurrence Formulas (1.19) 
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which we shall prove by the method of mathematical Induction, taking (1.18) 

in consideration. Let us consider an arbitrary point M (9,~) on the (n+l)th 

portion of the unloading wave (F&.4), and the characteristics MB and BN. 
At the point 

we have from (1.12) 

% = 
qSP (1 - P&f @ - 9) 49 u + Pf rz, 
2 (pa- Pa) (E, + 1) - 2 ma- 99 (5, + 1) - pg$, u, = - pul, 

Along NA 

u+ = - 24, - By J 2 -I- (i - !?*/ f (Y> J q2 + Cl 

c 

1 

= Pa f(P - 9Y.j’ + qaP - Pa) E, + QB (P - 111 
2(Pa-!74’f(E,+v IT - Y) + 

(1 - 97 WI, 
+W 

+ (i-9? W-9Va + 9aP- 9*1 

Along AB 
-qal ce,+ 1) 9a@a-9a) 

u* = - uy - ‘IaPy -I- ca, c, = c, - (1 - Q*) J cl2 
At point B, taWng into consideration the boundary condition ~(0, 7) = 0, 

we have 

uy = f/a B" (7 - 91, U+ = - '/#(~ - ?A + (72 

Further, along BC 

Ur = u, + “I, BY + csv c, = - P (T - Y) + c, 
along CM 

pa--i 
u+ = u&j -N&i + 98 f (y) + co cl=cs -kg-p (1.20) 

Combining (1.20) with the relations (1.12) and (1.16) which are valid at 

the point M, provided that 

4 < En+1 < IJq (1.21) 

and eliminating u,, I+ and f (y),we obtain 

F;,U 4 9") + 2 

' = Zg"tn+ 9a+ I Yf 
(i -pa1 (brl,--%*-4 

PWE, + I8 + 1) 

Formulas (1.19) follow from this. Conditions (1.21) are fulfilled for 

anynmd o\<q<j. 
A 

The slopes 5, form an increasing sequence + r 

with limit equal to SO - l/n. Equation of 

the asymptote of the wave of unloading has 

the form 

1 4 (1 - 47 
z= Yj-Y- qp(qpa+q-pa+f) 

(1.22) 
Fi43.5 
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The graphs of the variation of stress with time at sections of the bar, 

are, of course, also broken lines. Their form is shown schematically lnFlg.5. 

After the wave of unloading passes, the stress begins to drop off, approach- 

ing zero asymptotically, but remaining constant with time In the character- 

istic triangles PMIRR~, RlMg, etc., which border on the axis OT (Fig. 3). 

For P - 1 the solution which has been constructed 

reverts to solution (1.6) and (1.7). In this case 

unloading does not occur and the wave of unloading 

t =O (7J) becomes the ltwave of neutral loadlng" 

7 =I/, on which the stress at any section of the bar 

attains a maximum (in modulus) and subsequently re- 

mains constant. 

Pig.6 

2. If we pass to the limit ,EJ - 1 in the solution 

which has been obtained, I.e. If the velocity of 

propagation of heat In the bar becomes equal to the 

velocity of propagation of elastic disturbances, 

then a "resonance" occurs and the straight line 

7 - y will be a wave of strong discontinuity. The 

stress discontinuity 1s equal to 

ISI = s (y, y + 0) - s(y, y - 0) =-{:I? ;,yg; (2.1) 

The case p < 1. Taking Into consideration the Initial and boundary Con- 

ditions (1.4), we have a solution which, together with Its first derivatives, 

is everywhere continuous (Flg.6) 

region yON 

region NOK 

u = &L-q!i) (Y - v, s = 2 (i”l- pa) (Y - 4 (2.2) 
region KO7 

L(=- VY s=-- 
2 (1 + 8) 

(2.3) 

We note that Formulas(2.3) coincide with (1.7). Solution (2.2) 1s valid 

only In the region NOHL. Along HL 

y=z - 2 (I - f~) / 04, u = (1 - f~) / fv, UT = I, uII = s = -1 (2.4) 

There Is a plastic zone above HL. 

Solution (2.3) Is valid In the triangle OHP. Along h’P 

y=-4-J-2(1+p)~/p4 
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We construct, analogously to the previous case, the equation of the wave 

of unloading, which begins at the point ~(2 (1 + p) / p3, 2 (1 + p) / p’)in 

the form of a broken line. 

Equation of the first section of it, HM1, Is 

_ C-V+1 
2@_t_ q"p + p ’ q: = - ;!fl;q;;2’,i; = ;; (2.6) 

where 

f (Y) = - ev P (1 -PI 
2qa + PSP + P y - w + flap + P (2.7) 

Recurrence Formulas, analogous to (l.lg), have the form 

En& = 
E,O(l + qP) + 2 P' (1 - q2) 1,O - 4 (Pa - Q’) (f,O + 1) 

2QaE,U + Qa + 1 ’ 
qo = 

TI+1 P’ cwEno + qa + 1) (2.8) 

The sequence of slopes (<p) coincides with the sequence (5.3. Equation 

of the asymptote of the wave of unloading is 

z=yIq- 2 w - 47 f qBB’ (2.9) 

Formulas (2.6) to (2.9) which have been obtained are valid under the as- 

sumption that I/ fl< fl< i/ q;i.e. for 0 < q< 0. Passing to the limit 

as Q - 8, we find that the wave of unloading coincides with the thermalwave 

y = flz In this case. The stress just behind the wave front equals 

S= - B'Y / (1 + f9" - (1 - B) / (1 + B) 
from (2.7). 

On the other hand, In the region LXX (Fig.6), as easily verified, solu- 

tion which satisfies the conditions of continuity along the elastic-plastic 

boundary HL has the form 

u=z-y - (1 - 8”) 1 B”, s = -1 

Therefore, for q = 6, the thermal wave Is simultaneously the unloading 

wave and a wave of strong discontinuity. The stress discontinuity Is equal 

to 

[sl = o 
1 

-pay/(1 + P)” + 28/(4 + S) (y),2(1+8)/b) 

(Y Q 2 (1 + PI / P’) 
(2.10) 

3. Now let 6 < 4. It Is natural to look-for the equation of the Initial 

portion of the wave of unloading In the form of the straight line 

r =a(!/) = !iy + 2 (1 + B) (1 - B!J /B' (3.0 

with unknown slope ?. Let us assume that 5 > l/s. Then It is only possible 

to draw one characteristic ML In the plastic region from an arbitrary point 

M of the unloading wave which Intersects the elaStiC-PlaStiC boundary XL 

(Fig.6). It Is, therefore, necessary to solve the problem In terms of the 

displacements. 

Taking (2.4) Into account, we write out solution In the region LHN in 

the form 
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u = z - y - (1 - 0”) / f3’, uy = - 1, UT = 1 

By requiring the continuity of U, U, and u,. along HI1 and XX, we have In 
the reglonsRHK and KHM, respectively 

(3.2) 
u=~(y+qr)~_~(y-qr)__(2(*+~!(P-q))- (I+@$-@) 

u = 8 cpp; q) (Y + cl2 + $?_ q) (Y - d2 - $k12 + (3.3) 

+ !I$T(, + 42) + cp (g - qr) - cp ( 2 (l-i- ;; (P - 4 ) _ (I+ “b; - q2) 

The function cp is found from the obvious relation s = f (y),on the wave 
of unloading, i.e. 

From this, A,(x) 

A 1 (x) = &- + 2q “&pq~ Pf) , a _ 2 (1 + P) 
Pa (3.4) 

We obtain Cauchy problems for the regions MHB and BHp successively, and 
write out solutions In these regions in the following manner: 

region W3 

u = yF,(y)+ (Q--1) (1 + E) 

2q 
F, (y + z) + (‘+ ,,;I -E) F, (y - z) + 

W3(1 f&J 
+ 4 (P + q) (I- 5”) 

&2 + 22) +P+-~~)-l~~--&Ps")y~ +,a+ 

+ 
(1 +Py~-)y_~E;4E) y + *+ y _ (*+m(*--PPE)(q+E) z_ 

P (P + d (1 - 5’) 

-!++ (1 + B)2 (1 - PE) (q - B + E - qPE) _ (1 + PI a3 ;2;: - a -@PI (3.5) 
P’ (P + 4) (1 - E”) 

region BHP 

u = (q - 1) (1 + El 
a J’2 (Y -I- 4 + 

(‘I + ‘ii’ -E) F, (y _ r) _ + By2 + 

EP3 (1 - QE) 
+ 4 (P + 4) (1 - f’) 

(y2 + .r2) + P2 ‘q-&Eq;@~fE2) yr + 

+ (I + i3) (1 - Pf) (1 + eE) y _ (1 + PI (1 - Pt.) (fI + E) 1-q 
P (P -+ d (1 - E? P (B + d (1 - E’) 

z--r+ 

+ 
(1 + p)* (I - PE) (q -0 + E - (r/w + (1 + PI P&Q - a 

P’ cp + q) (1 - E”) (3.6) 
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2(1+ PI (1 -I%) 
Aa =ys- P4(i+E) 9 &=s;+ 2('f,4"',""' (3.7) 

By requiring the continuity of IL), along the characteristic HP, we find 

the function f (y)f rom (1.3), (1.5), (2.5), (3.6) and (3.7) 

f (Y) = qP(PE-qQPE--2P-q---1) 
2 (P + q) (I+ 8) (1 + d 

y _ P (1 - 4) (1 + 95) 
(P + d (1 + 9) (3.8) 

Here u and uT turn out to be continuous along HP for any 5. 

Solving the problem In the region .AfP'r, it Is easy to ascertain, that 

boundary condition ~(0, T) = 0 satisfies for any 5. 

To determine the equation of the wave of unloading, it Is necessary, In 

addition, to verify the conditions of loading and unloading at an arbitrary 

section of the bar before and after passage of the wave of unloading, I.e. 

(considering that the stress Is everywhere negative) 

as (?A t) < 0 

a% (f\(@(YN. qg > 0 (Z>@(Y)) (3.9) 

We find from (3.3), (3.4), (3.8) and (1.9) that the first of these con- 

ditions cannot be satisfied for any 5 > l/e. Assuming that the wave of un- 

loading lies below the thermal wave, I.e. 5 < l/g, we convince ourselves In 

like manner that second condition of (3.9) Is violated. 

Thus, the velocity of the wave of unloading cannot be greater than the 

velocity of propagation of heat In the bar, and for any !3 < 4 the wave of 

unloading coincides with the front of the thermal wave. Here all the condl- 

tions of continuity, the boundary conditions and conditions (3.9)are satlsfled. 

For p + 1 the solution reverts to (2.2) and (2.3). Unloading does not 

occur In this case, and the broken line 'C =a (7J) becomes the'btralght line 

of neutral loading" 'C = y. 

Of all the mechanical characteristics of a material the one which depends 

most on temperature Is the elastic limit. We remark that the solution which 

has been obtained Is valid for any temperature dependence of the elastic 

limit, since the elastic-plastic boundary HL (Fig. 1) Is a line of ConStad 

temperature In the casefi > 1 and In the case fl < 1 the temperature is zero 

along the elastic-plastic boundary (Fig. 6). 
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