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The propagation of elastic=-plastic waves in a semi-infinite bar 1s conside-
red when its unloaded end 1s heated in a linear manner. The cholce of a
linear variation of temperature makes it possible in thls case to obtain an
exact solution of a nonlinear heat conduction equation [1 and 2] and of the
problem of propagation of stress waves. In doing so it has been possilble
to explain the qualitative peculiaritles of solution of this type of prob-
lems. It has been ascertained that if the {constant) velocity of propaga-
tion of heat is equal tc the velocity of propagation of elastlc or of plas-
tic disturbances %in the case of linear strain hardening), & '"resonance”
occurs and waves of strong discontinuity form.

For any rate of rise of temperature at the free end of the bar, a wave
of unloading occurs. In contrast to the case of the usual wave of unloading
[ 3], the speed of the unloading wave approaches the speed of propagation of
plastic waves, not the speed of sound [4], or else colncides with the front
of the thermal wave. Thils is explained by the fact that as temperature in-
creases with a non-decreasing rate at the end of the bar, the wave of un-
loading is of an "internal” nature. If the wave of unloading [3] arises as
a result of changes of the boundary regime, the occurance of the thermal
wave of unloading is a consequence of the change of slope of the stress-strein
diagram (for a purely elastic diagram and the same boundary conditions un-
loading does not take place).

For a certain relation among the parameters of the problem it is not pos-
sible to determine the egquation of the wave of unloading from only the boun-
dary conditions and the conditions of continulty of the solution together
with its first derivatives everywhere. In order to find the veloclty of the
wave of unloading it 1s necessary to introduce additional considerations.

As in [5], it is assumed that the materlal of the bar exhibits linear strain
hardening. The mechanical characteristics are consldered not to depend upon
temperature.

1. The basic system of dimensionless Equations using the motations as in
[5], may be written in the form

aT 272
= o (equation of heat conduction) (1.1)
Fu 3s t

: 5 {equation of motion) (1.2)
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s = %;—:- — T (equation of state) (1.3)

The initial and boundary conditions are
u(y,0) =adu(y,0/or =0, s(0, 1) =0, T 0)=0 (1.4
Equation (1.1) admits exact solution
T — {1/2827 — /By (y <Bv) (1.5)
(y >B1)

Here the last condition of (1.4) is obviously fulfilled and T(0,7) = 3g%T
at the free end of the lar.

Let us consider the case for 8 > 1. The solution of the systems (1.2)
and (1.3), taking account of (1.%), has the form (Fig.l)
in the region yOx

T4
:R M u=20
: in the reglon KON
! ) 82
D ,’f( u= 4(Bz (y + T) 2(32‘__ 1) yr—_g’yz
P I )
i ) —sE—W—B) (16
| in the region ¥0r
A
K ___ B 8y L2y 2 B
y:p.r u= 4(3__]_1)(3/ +T)+2yT 4y
3 _ BS
0 ‘ S=TaEEn Y (4.9
Fig.1

It 1is apparent from (1.6) that the straight lines y = ft - const in the
region KON are lines of constants of displacement, velocity and stress.

Along AL (1.8)
= Pt '*‘2_(‘1."[%& u =81 1 1

, oy We=TF, W=—pr s=—1
(subscripts 1 and y denote derivatives). Therefore solution (1.6) 1s valild
only in the region x0yL; there 1s a plastic zone above FL.

Solution (1.7) 1s valid in the region 0yP. By direct verification we can
assure ourselves that above PHF there exists no solution corresponding to
loading. Therefore, a wave of unloading with the positlve inclination gy

begins at the point H (2 (1 4 B)/B3, 2 (1-+B)/B3).

When there is linear strain hardening we have in the plastic region MHL,
during loading, (Fig. 2)
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uy=e=e+7T, s=¢qge4¢—1 s
¢ =E,/E ¢ e
e ]
where F, 1s the modulus in the hardening range. tan=g
From this
s=quy — T + ¢ — 1 (1.9) S Al

From (1.2}, (1.5), and (1.9) we obtain
Equation of motion in terms of displacements

Uee = Uy + Y, ¢ Fig.2

The characteristics of last Equation and the relations on them may be

i
written dy = L qdf, du,7 = q dU»y e 112 qp dy

or, after integration

= + quy + Y, By + Cy,z (1.10)

We denote Equation of the wave of unloading by T =@ (y) We shall
assume that its initlal velocity satisfies inequality
1<’ U+ /P)<1/gq (1.11)
It is then possible to draw through an arbltrary polnt ¥ of the wave of
unloading which is sufficiently close to the point ¥ the characteristic of
poslitive slope ¥C and in the plastic zone the characteristics of both direc-
tlons, M4 and ¥B, which intersect the elastic-plastic boundary 5. The re-
lations (1.10) hold along ¥4 and ¥B. From this fact, taking conditions
(1.8) into account, we obtain at the point M (y,w (¥))
_em B 7B 1—g
== e = — 1-1.2
Uy 2(3: m(y) + 2(35._.qn) y— Bl__qa 1 t ﬁ“u ( )
We introduce the function f(y), which is equal to

the stress 1ln elements of the bar just behind the wave R T
of unloading. Following Equation of state will then z U
hold in the reglon Ay¥ {BC, Fig. 2) |
— -1 ¢?—1
s=u—T+ P f + 7 : M,
and Equation of motion may be written out in the form : N
%u au q’
01:’ = a Ja + f (y) + B R
|
Along the characteristic Dy ﬂ, 2
gt —1 i ! v
= du,+ L5~ df (9) + 7 Bdy .
E .
or, after integration | :
s 1 P L
q —
=uy+ @) +3by + G (113 % Pfx
u:
In the region TPYR Equations (1.2) and (1.3) apply, 0 A

and we have along €D Fig. 3
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u. — 1 — BB +1)
u=uwtyby+C  C=SFIF - (1.14)
Obviously, f(2 (1 + ﬁ) / ﬁ’) = —1. Requiring the continuity of u, and

u, at polnt D, we find by comparing (1.14) with (1.13) that
Cs=Ci+ (-1 /¢
Thus, at the point M (y,m (y)) on the wave of unloading we have

q 1

ue=uw + 521 0) + 3y + 5B -0 @1+ L5
Moreover, s(y,m (y)) = f (y), or
v=1@/ ¢+ @2—-Ppy/2+1—-¢)/q (1.16)

Eliminating u;, u, and f (y), from (1.12),(1.15) and (1.16), we obtain
Equation of the initial portion of the wave of unloading in the form of the
straight line

(1.15)

= — ¢ +28+1 __2(1—92)(1"‘[3)2
=t L=sarmrsr M= —Faaremts 1)

Here conditions (1.11) are satisfied for any O q < 1.

This solution 1s valld until the characteristics ¥¢ and PHF intersect,
i.e. up to the point ¥, (Fig. 3).

Analogously to the preceding, by considering the characterlstics ¥4, ¥B,
¥p and DE we find that the next portion of the wave of unloading ¥, M, is a
segment of a straight line with slope €, greater than g,,

T T = E»Z?/ + Ny
£, = g -+ 6gt -+ 4q?B - 4B 41
2T 4+ Bt 4P+ 6B+ B
20— (—a 4 4B+ B2+ B2+ 4B 4 1)
e = B @+ ¢'B +4¢ + 62 B+ B
where (1.18)
£ — (1 +eh)+2 My = (1—¢% (B*m — 45, —4)
2T 2 2 B2 (2¢*E1 + o2+ 1)
g Beyond point M, we obtain T = &y -+ M3, &5 > &
| n-1 d ete. Thus the wave of unloading presents a broken line.
[ The slopes and intercepts of the individual segments
H of it are related by recurrence Formulas (1.19)
E .
0 E, (14-4%) +2 (1 — %) (B, — 45, — %)

Pig.l Eniy = z—qign—m y Mnsr = B, -2 1)
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which we shall prove by the method of mathematical induction, taking (1.18)
in consideration. Let us consider an arbitrary point ¥ (y, t) on the (n+1)th
portion of the unloading wave (Pig.4), and the characteristics ¥5 and B¥.

At the point

S T—y My E, (v—v) N
MeFr -t b tet)
we have from (1.12)
w Q"B(i“BEn)(T-?})__ #B3{+Bn, I kB — —Bu
VT 28— ), + 1) 2(RT— ¢ (E,+1) Br—g2’ T v
Along ¥4

Us = —uy —Py/24+ 1A —¢4 )/ ¢+ C,

B — ¢+ B — ) E, + ¢ (B — D)
Cr= =T D t—y+

(1 — g% B, (1—¢?) (B2 — ¢?B2 -+ 2 B— g¢?)
tie—me 0 T -9
u,=—-uy——1/2By+Cz, C“I=Cil.w'(1''-qu)/q2

At point B, taking into consideration the boundary condition g{0, 7} = O,
we have

Along 4B

uy =, B2 (v — 9, ue = — Yo P2 (v — ) + G
Further, along FC
ue = Uy + Y3 By + Css Co=—P(r—y +C
along oM
we=uy Faby+ESTE @)+ Co Co=Co+EE (120

Combining (1.20) with the relations (1.12) and (1.16) which are valid at
the point ¥, provided that

{ < &y < 1/g (1.21)
and eliminating u,, uy and f (y),we obtain
E,(1+oh)+ 2 (1 —g¢* (B, — 48, — 4
T FerE, t e+ D
Formulas {1.19) follow from this. Conditions (1.21) are fulfilled for
any n and 0 < ¢ < 1.

The slopes &, form an increasing sequence

k r
with limit equal to £, = 1/¢. Equation of
the asymptote of the wave of unloadlng has
the form
4(1—q%)

1
T YT W=D (.22) Fig.5




108 Iu.P. Suvorov

The graphs of the variation of stress with time at sections of the bar,
are, of course, also broken lines. Their form is shown schematically in Flg.5.
After the wave of unloading passes, the stress begins to drop off, approach-
ing zero asymptotically, but remalning constant wlth time in the character-
istic triangles PMiR., RiMR. etc., which border on the axis Ot (Fig. 3).

For ¢ - 1 the solutlon which has been constructed
R reverts to solution (1.6) and (1.7). In this case
’{& & unloading does not occur and the wave of unloading
Ml /R OQZ T = © (y) becomes the "wave of neutral loading"
N T =y, on which the stress at any sectlon of the bar

AT

7 Qf attains a maximum (in modulus) and subsequently re-
p /) mains constant.

H 2. If we pass to the 1limit 8 - 1 in the solution
which has been obtained, 1.e. 1f the velocity of

Y propagation of heat in the bar becomes equal to the
0 velocity of propagation of elastlc disturbances,
then a "resonance" occurs and the straight line

Fig.6
T =y will be a wave of strong discontinuilty. The
stress discontinuity 1s equal to
—Yy  (y<<4h)
[s]Es(?l,y+0)—S(y.y—0)= —1 w>4 (21)

The case g < 1. Taking into consideration the initial and boundary con-
ditions (1.4), we have a solution which, together with its first derivatives,
is everywhere continuous (Fig.6)

region yO¥ o
u =
region ¥OK
4 4
v =g v — O s=ra-m@— (22)
region X0t

— p? 3 43 1 104 __ B (23)
v=—gqarp @ TPy gbh =y &

We note that Formulas(2.3) coincide with (1.7). Solution (2.2) 1s valid
only in the region NOHL. Along AL

y=v—2(1—p) /P u=(1—p)/BYu=1, u=s=—1 (24)

There 18 a plastic zone above HL.

Solution (2.3) 1s valid in the triangle O§P. Along HP

y=—7+2(1+p)?/B (2.9)
BUB+3B+Y) o, (EBEE+BN  (L+BE B
AT S ' Btl) (L E B
PEBA1) L (4B _BERBAD __ (LEB)EB-
w=—tggry Tt WS I B
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We construct, analogously to the previous case, the equation of the wave
of unloading, which begins at the point g(2 (1 + B) /B3 2 (1 + B) / % 1n
the form of a broken line.

Equation of the first sectlon of 1t, g¥,, 1s

— o0 0 e o i B 0o _4@—g)(1+B)

TNy W g rmrgr WS T gertesrn GO
where
I _ _B(—g?
1w = % ¢B+B Y 21 ¢BLB 2.7)
Recurrence Formulas, analogous to (1.19), have the form

E L0+ g +2 Bl —g)n —4(B*— ) (E,°+1)

M= 5aE 2 ’ N, = 'YF 0 2 (2'8)
o 2¢%,0+ ¢+ n+1 B* (29%E,°+ 4"+ 1)

The sequence of slopes {£°} coincides with the sequence {€,]. Equation
of the asymptote of the wave of unloading 1s

v=ylqg—2@0*—¢)/ ¢t (2.9)
Formulas (2.6) to (2.9) which have been obtained are valid under the as-

sumption that 4 /P < E, << 1/ ¢,1.e. for 0 < ¢ < P. Passing to the limit
as g -~ B, we find that the wave of unloading coincides with the thermal wave
Yy = ﬁr in this case. The stress Jjust behind the wave front equals

s= —Pfy/ 1+ —-01—-F/(1+8)

from (2.7).

On the other hand, in the reglon Lyk (Fig.6), as easily verified, solu-
tion which satisfles the condltlons of continuity along the elastilc-plastic
boundary yL has the form

u=t—y—(1—p3/p4 s=—1

Therefore, for ¢ = g, the thermal wave 1s simultaneously the unloading

wave and a wave of strong dilscontinuity. The stress discontinuity 1s equal
b [s]={ —By/(A+B'+2B/A+B) @20+ (94
0 (y<2(1+B8)/BY

3. Now let 8 < g. It is natural to look for the equation of the initial
portion of the wave of unloading in the form of the stralight line

T=oy)==¢t +21+p) 1 —pE/p (3.1)

with unknown slope :¢. Let us assume that € > 1/p. Then it is only possible
to draw one characteristic 7 in the plastic region from an arbiltrary point
M of the unloading wave which intersects the elastic-plastlc boundary AL
(Fig.6). 1t 1s, therefore, necessary to solve the problem in terms of the

displacements.

Taking (2.4) into account, we write out solutlion in the reglon Ly¥ 1n
the form
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u=1—y—1—-0/8 u=—1u =1
By requiring the continulty of u, u, and Uy along HR and FK, we have in
the regions A¥¥ and xgM, respectively (3_2)
_1—g _ o (20+BB—9 ) (B B—¢
u = 2q (y +4q7v) T oy qr) ( B ) peE
2 5____ _ . l 2

U (B+q) + 90 + gy v — 90" — 7By + (3-3)
2(1+ — 1 — g2

+—2qq(y+qr)+q>(y—qf)— & TEZ(B D) +le$ o

The function g is found from the obvious relation s = f (y),on the wave
of unloading, i.e.
1 1 1 1— 1 — g2
uy (oo @) = f ) —5 B (1 — ey +LHDL=FD 4 10
From this, A(x)

{— gt 8 (1 — BY)
0@ =" | 1@ de — ey @

(1 +B) (1 —BY) 1—q)@+0)
tserga—m*t g = tD

a

Ay () =7 F—gD TR
We obtain Cauchy problems for the regions W5 and BHP successively, and

xqg +ZQ(1+B)(1—B§) o — 20 +B (3.4)

write out solutions in these regions in the followlng manner:

region MHF
u = 1—‘1-;12 Fl( )+ (q_1)2(1+§) Fz(y_{_r) +WF3(?/_T)+

£85 (1 + gb) Pl o, L
teroi—m @ T+ TEiga—m ¥zt

U+ B) (L —BE) (1 +g8) |, 1—g _(1+B)(1-—B§)(q+§)
+—seroa=m YT & Y FEFo (=5

oy EBRU-BOGB LTy “””2“;2;:_2"“"23) 35)
region BHP
u==NUED gy + LEGA=E p(y — ) — 7By +
+ ey O+ )+ T e
+ R Ty SR
YR LR YOS FR Y BRI A N
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Here
v A, A,
F@)={f@d, FRo+9={1@d, Fo—v={f@d
_ytT_ 20+B(—BY) _y=T 20 +B) (B
=T warn 0 ATt T ea-n o0 G0

By requiring the continuity of u, along the characteristic gp, we find
the function f (y)from (1.3), (1.5), (2.5), (3.6) and (3.7)
_9BPBE—gBE—28—g—1)  B(1—q) (1+48)
W =Serparnaro Y BTod+9 (3.8)

Here u and y, turn out to be contlnuous along #P for any €.

Solving the problem in the region yP1, it 1s easy to ascertaln, that
boundary conditlon g(0, 1) = O satisfies for any €.

To determine the equation of the wave of unloading, it 1s necessary, in
addition, to verify the condltions of loading and unloading at an arbltrary
section of the bar before and after passage of the wave of unloading, 1.e.
(considering that the stress is everywhere negative)

5 (3,
209 <0 w<omy 2LV >S0 @>er) (39

We find from (3.3), (3.4), (3.8) and (1.9) that the first of these con-
ditions cannot be satisfied for any £ > 1/8. Assuming that the wave of un-
loading lies below the thermal wave, i.e. £ < l/b, we convince ourselves 1n
like manner that second condition of (3.9) is violated.

Thus, the veloclty of the wave of unloading cannot be greater than the
veloclty of propagatlon of heat in the bar, and for any B < g the wave of
unloading coincides with the front of the thermal wave. Here all the condi-
tions of continuity, the boundary conditions and conditions (3.9) are satisfied.

For g - 1 the solution reverts to (2.2) and (2.3). Unloading does not
occur in this case, and the broken line T = o (¥) becomes the 'strailght line
of neutral loading" T = y.

Of all the mechanlcal characteristics of a material the one which depends
most on temperature is the elastic limit. We remark that the solution which
has been obtained 1s valid for any temperature dependence of the elastic
1limit, since the elastic-plastic boundary HL (Fig. 1) 1s a line of constant
temperature in the casefl > 1 and in the case § < 1 the temperature 1s zero
along the elastic-plastic boundary (Fig. 6).
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